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If we completely understand how a phenomenon works, we should be able to produce it ourselves. However, 
the individual differences in color appearance observed with #theDress seem to be a peculiarity of that 
photo, and it remains unclear how the proposed mechanisms underlying #theDress can be generalized to 
other images. Here, we developed a simple algorithm which transforms any image with bicolored objects into 
an image with the properties of #theDress. We measured the colors perceived in such images and compared 
them to those perceived in #theDress. Color adjustments confirmed that observers strongly differ in how 
they perceive the colors of the new images in a similar way as for #theDress. Most importantly, these 
differences were not unsystematic, but correlated with how observers perceive #theDress. These results 
imply that the color distribution is sufficient to produce the striking individual differences in colour 
perception originally observed with #theDress – at least as long as the image appears realistic and hence 
compels the viewer to make assumptions about illuminations and surfaces. The algorithm can be used for 
stimulus production beyond this study. 

http://dx.doi.org/ 

1. Introduction 
Individual differences may originate from a small number of common 

perceptual factors, thus investigating them may help to understand 
fundamental determinants of perception [1]. The malleability of color 
appearance by implicit assumptions has been brought to the spotlight by the 
striking individual differences in the perception of #theDress. Some 
observers see the dress in that photo white and gold, others perceive it blue 
and black. We will call this phenomenon #theDress effect. 

Independent laboratories across the world provided evidence that the 

perceived colors depend on what lighting conditions observers assume in 
the scene on the photo: Observers who assume the dress is in the shadow 
tend to see its colors white-gold, those who assume that it is in bright, direct 
light see it blue-black [2-12; for review, see 13]. However, many of those 
observations are merely correlational: When the dress in the photo is seen in 
a certain color (e.g. white-gold), the illumination is judged correspondingly 
(e.g. dark and bluish). It seems plausible that the assumption about the 
illumination causes the perception of the dress; yet, the inverse causal 

relationship cannot be excluded with certainty, namely that observers infer 
the illumination based on the color that they see on the dress. It could also 
be that a yet unknown other cause determines both, the perceived color of 
the dress and the illumination [e.g. 14-17].  

Additional evidence suggests that the differences in interpretation are 
possible because the sensory color signal (chromaticities) of the dress is 
distributed along the daylight locus, the curve along which natural daylight 
varies [6-12, 18-20]. Rotating chromaticities away from the daylight locus 

(while keeping luminance information) reduces the individual differences. 
Individual differences completely disappear when rotated 180 degrees [19-
20].  However, these observations merely show that the distribution along 

the daylight locus is necessary for the individual differences. It does not 
prove that the color distribution is sufficient to elicit those striking 

differences in color perception, or whether there are other properties of that 
photo that are necessary to produce #theDress effects. To date, the effects 
on color appearance observed with #theDress remain a peculiarity of that 
photo, and it is unclear whether the proposed mechanisms underlying 
#theDress are general principles that affect the colour appearance of other 
images. Yet, if we completely understand how a phenomenon works, we 
should be able to produce it ourselves.  

This is the purpose of the present study. We developed an algorithm to 

transform photos into images with properties like #theDress. We then 
measured color appearance and color naming for those new variants of 
#theDress and tested whether they produce similar individual differences as 
#theDress.  

2. Method 
In previous experiments we observed that repeated viewing of #theDress 

may contaminate measurements of color appearance [20]. We wanted to 

make sure that similarities between the new images and #theDress do not 
emerge due to observers’ tendency to provide consistent answers across 
trials within a session. For this reason, we first measured #theDress in a 
preliminary online study, in which #theDress was seen before the new 
images. Then, we did the inverse in the laboratory: we first measured the 
new images, and then #theDress. Cross-validation between the online and 
laboratory measurements allowed us to assess the role of the sequencing for 
our results. The average time between the two measurements was 12 days 

(SD 29 days).   

A. Participants 
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70 participants (56 women, 24 men; average age 23.3±5.1 years) took 
part in the laboratory experiment. 72 observers (57 women, 15 men; 
23.3±4.9 years) participated in the preliminary online survey. Of those, 69 
participants took part in both the lab and the online measurement. All 

observers were students of the Justus-Liebig-University Gießen and were 
compensated by 8 Euro per hour or course credit. None of the observers had 
any color deficiencies as tested by self-report (online survey) and the HRR-
test [21].    

 

Figure 1. Illustration of algorithm. The first step is the projection of the chromaticities of #theDress on the first principal component. Panel A reproduces 

the original photo of #theDress with a black background. Panel C represents the distribution of chromaticities of #theDress in CIELUV-space. The black 
line corresponds to the first principal component of those chromaticities. Panel C shows the image that corresponds to the chromaticities projected on the 
first principal component (black line in B). In the second step, the same is done with a new image, such as the photo of a jacket (panels D-F). To project the 
bluish chromaticities on the lighter and the brownish chromaticities on the darker patterns, the algorithm mirrors chromaticities when necessary. This is the 
reason the jacket is red in panel F and green in panel G after mirroring chromaticities (cf. reddish and green line in panels E and H). Then the chromaticities 
(greenish line in panel H) are projected onto the principal component of #theDress, and mean and standard deviation are set to those of #theDress (bluish 

line in panel H). Panel I illustrates the resulting image.  In Code File 1 [22], a Matlab algorithm is available to try out the algorithm illustrated here.     

B. Stimuli 

From previous investigations we know that the background has little 
importance for the individual differences in the perception of #theDress [3, 
5, 12, 20, 22]. For this reason, we could simplify #theDress by cutting the 
dress from its original background and showing it on a uniform black 
background.  

Figure 1 illustrates our algorithm for producing #theDress-like images. A 
precondition of the algorithm is that the image to be processes includes two 
parts with a lighter and a darker color of arbitrary chromaticities. In the 
example, this was a red-black jacket (Figure 1D. The algorithm starts with 
projecting the chromatic distribution of #theDress (Figure1B) on the first 
principal component of that distribution, implying that chromaticities vary 
only along one hue direction (black line in Figure 1B). Figure 1C shows the 
resulting image of dress. The projection on the principal component barely 

changes the appearance of the #theDress as can be seen by comparing 
Figure 1C with the original #theDress in Figure 1A.  

We apply the same procedure to the new images, as illustrated with the 
example of the jacket in Figure 1D-F. Note again that the transformation of 
the image is barely visible (Figure 1D vs. Figure 1F). 

Then, the chromaticities along the principal component of the new image 
are projected onto the principal component of the #theDress. Our algorithm 

ascertains that the bluish chromaticities of the lighter part of the new image 
are projected to the lighter part of #theDress, and the brownish 
chromaticities from the darker part of the new image are projected onto the 
darker part of #theDress. For this, our algorithm discriminates the two parts 
of each object using a k-means cluster analysis with 2 seeds. Then, it detects 
which is the lighter part in each image. If the chromaticities of the lighter 

part project to the chromaticities of the darker part of #theDress, our 
algorithm inverts the chromaticities of the new image, which is equivalent 
to mirroring the distribution along the hue direction. Due to this inversion, 
the jacket in Figure 1F becomes green in Figure 1G, and the greenish line of 
the jaket in FigureH is oriented to the opposite direction of the line in Figure 
1D.  

After projecting chromaticities of the new image on those of the 
#theDress, we also set the mean and the standard deviation of the 

distribution of the new image to the ones of #theDress (Figure 1G). Figure 
1I shows the resulting image of the jacket. To try out the algorithm, a 
Matlab program and example images are available in Code File 1 [23]. 

In addition to the jacket in Figure 1, we processed three images with this 
algorithm, showing a tie, an egg, and a fish (Figure 2A-C). We added a fifth 
image to this set (Figure 2D). That image is based on a photo of sandals that 
appeared on Buzzfeed on 20th November 2016 [24]. That photo has a 
similar chromatic distribution as #theDress and produces very similar 

individual differences as #theDress [20, 24]. Here, we cut out a “peephole” 



of that photo to remove shape information about the identity of the sandals 
on that photo. Then, we processed the image with our algorithm [23] so that 
chromaticities align with one hue direction. The resulting image allowed us 
to test whether objects on the photo need to be recognizable to produce 
individual differences, or whether the chromatic distribution is sufficient. As 

can be seen from Figures 1 and 2 each of these images has a light, more 
bluish and a dark, more brownish part with colors close to those of the body 
and lace of #theDress. 

 

Figure 2. Stimuli. Images in panels a-b were created with the algorithm 
illustrated in Figure 1 and implemented by the Code File 1 [23]. For 

#theDress and jacket see Figure 1C&I. 

C. Online Survey 

The procedure for the online survey followed the one described in detail 

by Witzel et al. [5]. It consisted of four parts. In the first, observers entered 
personal information (gender, age, glasses, color deficiencies).  

In the second part, observers were asked to choose a color term to 
describe the color of the lace and the body of #theDress by selecting one of 
14 color terms, respectively. The color terms were the elven basic colour 
terms (pink, red, orange, yellow, green, blue, purple, brown, black, gray, 
and white), plus gold, bronze, and silver. After that, participants answered 
three questions about the light that illuminates the dress. (1) “Is the dress in 

the shadow” with the response options: Yes, no, or “I don’t know”; (2) 
“From which direction is the dress illuminated?” From the front (the 
direction of the observer), the back (same light as in the background), both, 
or “I don’t know”; (3) “Is the dress illuminated by the flash of the camera?” 
Yes, no, or “I don’t know”. Then, we asked observers to rate the brightness 
and color of the light that illuminates the dress. They could choose a number 
between 0 and 10. For the brightness judgements 0 meant dark and 10 light. 
The color judgments concerned the blue-yellow hue direction, with a rating 

of 0 meaning blue, 5 colorless and 10 yellow. Two questions about the 
illumination of the whole scene followed. (1) “The dress is illuminated by 
the same light as the background”: Yes, no, “I don’t know”. (2) “The photo 
is overexposed”: Yes, no, I don’t know.  

In the third part observers chose color terms to describe each part of the 
jacket, tie, egg, fish and peephole. Finally, a fourth part asked observers 
whether they have seen #theDress before, whether they can switch the way 
they see the dress, and what color the dress has in reality.  

 

Figure 3. Procedure of lab experiment. Sequence of naming and 
adjustments for the jacket. In this example, the sequence continues with the 
tie after the jacket. In the experiment, the sequence of images was 
randomized except that #theDress was always the last sequence of the 

experimental session.  

D. Lab experiment 

In the lab experiment, observers completed the color naming and then 
color adjustment tasks described previously [12] for the two parts of the 
object in each image (Figure 3). For each image, the lighter part was judged 
first. The image was presented in the center of the screen, and observers 

named the color of that part using 13 color terms (as survey, but without 

silver). Then the image was displayed on the left side of the screen, and on 
the right side a disk was shown in a random color. The observer adjusted 
the color of the disk so that it matches the color they perceived in the image. 
After finishing this sequence for the light part, they did the same for the dark 
part of the respective object.  

The observer did this first for all new images (i.e. without #theDress). 
The order of the blocks with each image was random. For all observers, the 
very last block consisted of color naming and color matching for #theDress. 
While participants saw #theDress before seeing any other image in the 
online survey, they saw the other images before seeing #theDress in the lab 
experiment.  

3. Results 
A few observers reported that they mixed up adjustments and naming for 

the respective two parts of some of the objects. For some observers who did 
not mention this during the experiment, it seemed obvious from the raw 
data. For the main results below, we swapped the adjustments and color 
terms of the two parts if it was obvious (e.g. if the brownish part was 
adjusted or named blue and the bluish part brown or black). We also deleted 
responses in which observers gave the same response to the dark and light 
parts (e.g. body and lace). We did this to exclude the possibility that 

observers who consistently swapped or repeated answers produce spurious 
correlations across observers. In any case, the main results also held for the 
uncorrected raw data, just correlations were slightly lower; we will provide 
additional information on this in each section below. The raw data is 
available on Zenodo [25]. 

Table 1. First principal component of adjustments. 

 Expl 

Var a 

Light partb Dark partc 

 L* u* v* L* u* v* 

Dress 72.0 0.24 0.16 0.60 0.27 0.37 0.59 
Tie 47.5 0.30 0.13 0.57 0.29 0.35 0.60 

Jacket 58.2 0.17 0.20 0.85 0.20 0.23 0.33 
Egg 37.9 -0.06 0.32 0.86 0.12 0.22 0.29 
Fish 46.5 0.19 0.23 0.85 0.28 0.15 0.29 
Peep 58.2 0.25 0.20 0.61 0.30 0.34 0.56 

a Explained variance in percent; b Principal component weights of the 
light part; c Principal component weights of the dark part 

A. Adjustments 

There was one observer who made almost the same adjustments 
(Euclidean distance <10) for the two parts of the dress, the jacket, the egg 
and the peepwhole, and there were two such observers for the fish. These 
data were excluded from the below analyses.  

Figure 4 illustrates the color adjustments of the disk to match the lighter 

(blue circles) and darker (yellow circles) of the images. As for the matches 
of #theDress, the adjustments of each part of tie, jacket, fish and peephole 
were distributed along the blue-yellow direction. Adjustments of the egg 
were more scattered across color space (Figure 4D).  

Following an earlier approach [12], we projected each observer’s 
adjustments onto the first principal component of the six dimensions, i.e. 
lightness, u*, and v* for the two parts of each image (cf. red lines in Figure 
3). Table 1 reports the explained variance and weights of the first principal 

component for each of the six dimensions. The first principal component 
explained 72% of the variance of #theDress, 47% of the tie, 58% of the 
jacket, 38% of the egg, 47% of the fish, and 58% of the peephole (blue bars 
in Figure 8A). The scores of the principal component provide a single point 
for each observer in the six-dimensional space. Positive values of the scores 
corresponded to data points towards the light, yellowish direction of color 
space. For all images, the blue-yellow dimension (v*) of either the lighter or 
the darker part (tie) of the object yielded the highest weight on the principal 

component (bold numbers in Table 1).  
Correlations across observers between the scores of the first principal 

component are a way to determine whether individual differences of the 



responses are related across images [5, 20, 26]. So, we calculated 
correlations across observers between scores for #theDress and those for 
each new image. Figure 5 illustrates the correlations through scatter plots. 
The scores for all images were positively correlated with those for 
#theDress. The tie (r(67) = 0.59, p < 0.001), the jacket (r(66) = 0.54, p < 

0.001), and the peephole (r(66) = 0.55, p < 0.001) yielded highest, the fish 
(r(65) = 0.40, p < 0.001) and the egg (r(66) = 0.25, p = 0.04) lowest 
correlations (cf. blue bars in Figure 8D). All correlations were also 
significant with the uncorrected data except for the egg.  

 

Figure 4. Adjustments. Green-red (u*) color dimension on the x-axis, blue-
yellow (v*) on the y-axis. Each data point represents the match of one 
participant, blue for the light part of the image, and yellow for the dark one. 
Red lines represent the first principal component of the color adjustments 
projected onto the u*v* plane. Note that the two red lines are two parts of 
the same principal component in six-dimensional space. This is possible 

because four dimensions, i.e. u* and v* for the dark and the light part, 
respectively, are represented in the same u*v* plane for illustration purposes 

(for details, see [12]). 

 

Figure 5. Correlations of adjustments. Scores of the first principal 
component of the #theDress color adjustments are shown along the x-axis, 
those for the new images along the y-axis. Each panel corresponds with one 
of the new images. Each data point is the principal component score 
computed on one participant. Pearson’s correlation coefficients (r) are 
reported in lower right corner in red, with its degree of freedom and 

statistical significance: * p < 0.05, *** p < 0.001. 

B. Naming (Lab) 

Figure 6 illustrates naming answers for #theDress and the new images in 
the lab experiment. The light part of all images was mostly called blue or 
white, and in a fewer cases also purple (upper charts in Figure 6). The dark 

part of all images was mostly described as gold, black, brown or bronze 
(lower charts in Figure 6). The fish (Figure 6D) yielded different responses 
than the other images: There were less individual differences for the light 
part because most observers called it “blue”, and most observers described 
the dark part with the achromatic color terms black or grey instead of gold 
or brown. For #theDress, the jacket, and the fish, five observers gave the 
same answer to both parts; this was the case for four observers with the tie 
and the peephole, and for seven observers with the egg. These answers were 

excluded from the below analyses. 
To assess the systematic variation of color naming across observers we 

adopted an earlier approach [5] to calculate naming scores: We coded each 
of the 14 color terms as a dummy variable (1 = chosen, 0 = not chosen), 
separately for the light and the dark part (e.g. body and lace). Then we 
performed a principal component analyses with those 28 binary variables. 
The first principal component represents the correlations in naming between 



the two parts. For example, a combination used by many observers, e.g. 
blue for the body and black for the lace of #theDress, yields a score with a 
high absolute value. Whether the minima and maxima of the scores 
coincide with -1 and 1 depends on the relative frequencies of responses. To 
calculate the naming scores, we shifted the scores so that the minimum and 

maximum naming score is -1 and 1. The x-axis in Figure 6 illustrates the 
naming scores with the example of #theDress.  

For all stimuli, the naming score yielded a minimum (-1) for blue and 
black, and a maximum (+1) for white and gold. Scores in between were 
color-term combinations that were less often combined. For example, the 
naming scores around -0.5 for #theDress in Figure 7 corresponded to blue-
brown and blue-bronze, scores around 0 to blue-gold, purple-blue, and 

purple-bronze, and values around 0.5 to purple-gold, and combinations of 
white with brown, yellow, and bronze. 

We calculated correlations between those naming scores and the 
adjustment scores, as illustrated for #theDress in Figure 7. The naming 
scores were positively correlated with the adjustments scores for all images 

(all p < 0.001; cf. green bars in Figure 8B). These correlations suggest that 
naming scores convey similar information as the adjustment scores.   

We tested for similarities between #theDress and the new images by 
correlating naming scores of the new images with those of the dress. All 
correlations were highly significant (p < 0.001) and confirmed those 
observed with the adjustments (green bars in Figure 8C).  

 

Figure 6. Colour naming in the lab experiment. The pie chart expresses the relative naming frequency for each color term observers chose. Each panel 
corresponds to one stimulus. The upper and lower part of each panel correspond to the light and dark part of each object. Initials of color terms are given on the 
side of each pie: B = Blue, W = White, Pu = Purple, Gd = Gold, K = Black, Bz = Bronze, Br = Brown, and ... = other, i.e. color terms that have been chosen 

less than five times. 

C. Online survey 

The answers to #theDress of one of the 72 observers were excluded 
because he gave the same answer for body and lace (grey). We calculated 

naming scores for the naming data from the online survey in the same way 
as above for the lab naming data. We correlated the online naming scores 
with the adjustment and naming scores from the lab for each image (see 
green and yellow bars in Figure 8B). All correlations were highly significant 
(p < 0.001), indicating similarity between responses in the online survey and 
those in the lab experiment. The only exception was the correlation between 
online naming and adjustments for the egg, which was much lower than the 
other correlations (r(66) = 0.32, p = 0.007; cf. black dot in Figure 8B) and 

did not reach significance with the uncorrected data. 
The online survey reproduced the results from the lab, with naming 

scores for all new images being significantly correlated with those for 
#theDress (all r(69) > 0.55, all p < 0.001). In fact, for all but the fish the 
correlations were highest for the online naming than for the other 
measurements (yellow bars in Figure 8C). These results were the same with 
the uncorrected data (all p < 0.001). 

As previously [5], we tested whether the questions on the assumptions 
about the scene and the illumination were related to #theDress. The 

assumptions concerned #theDress, not the new images. We calculated 
correlations between the naming scores and the ratings (0 to 10) of 
illumination brightness and color (yellow-blue). #theDress was negatively 
correlated with brightness (r(69) = -0.30, p = 0.01) and positively with 
yellow-blue judgments (r(69) = 0.31, p = 0.008).  

We tested the relationship between color perception and qualitative 
questions about assumptions by calculating point-biserial correlations (the 
statistics of which correspond to t-tests for independent samples). Observers 

who assumed the dress was in the shadow tended to answer color terms 
with a higher score, i.e. towards white-gold (r(63) = 0.48, p < 0.001; 6 
observers answered they don‘t know). Reversely, observers who answered 
the photo is overexposed tended to answer blue-black (r(57) = -0.34, p = 
0.009). The results for the questions about shadow and overexposure could 
be reproduced when using the dress score from naming in lab (shadow: 
r(58) = 0.39, p = 0.002; overexposed: r(51) = -0.31, p = 0.02), and the 
adjustment scores (r(60) = 0.27, p = 0.04; overexposed: r(54) = -0.30, p = 
0.03). The other questions, such as those about the flash and the direction of 

illumination (cf. Method) did not yield any significant correlation. The 
results support the idea that the assumption about the dress being in the 
shadow and the photo being overexposed is strongly related to the 
perceived colors of #theDress.  

 

Figure 7. Correlation between naming and adjustment scores for #theDress 
in the lab experiment. The x-axis represents the naming score varying 



between -1 (B-K = blue-black) and 1 (W-Gd = White-Gold). The y-axis 
corresponds to the adjustment scores. Each black circle is the data for one 
participant. The red line is the regression line illustrating the correlation 

given in the upper left corner.  

D. Cross-validation 

A final open question is whether the observed correlations between 
#theDress and the new images can partially be explained by a response bias: 
Observers might tend to give similar responses across trials, even with 
different images, when conducting the measurements in one experimental 
session. To address this issue, we compared the responses between the 

laboratory and the online measurements.  

Figure 8D reports correlations between responses to #the dress and the 
other images across the three types of measurements. The online 
measurements of #theDress were done before seeing the other images. In 
contrast, the adjustments of the new images were done before adjusting 
#theDress. For this reason, the correlations between these two 

measurements (dark green bars in Figure 7D) are of particular interest. The 
lowest of these correlations occurred for the egg, and was still significant 
(r(66) = 0.25, p = 0.04). However, all combinations across measurements 
yielded significant correlations (Figure 8D). Again, results were all 
reproduced with the uncorrected data except for two non-significant 
correlations involving the egg. Overall, the positive correlations show that 
responses to the new images are related to the perception of #theDress, and 
that this main result is independent of sequencing and robust to 

measurement noise across the different types of measurements.    

  

Figure 8. Overview of results. Panel A shows the variance explained (y-axis) by the first principal component for each object and each measurement, i.e. 

adjustments (blue), naming (green), and online survey (yellow). Panel B illustrates the correlations between scores for each stimulus in two measurements, i.e. 
between adjustments and naming (blue), adjustments and online survey (green), and between lab and online naming (yellow). Panel C summarizes the 
correlations between the scores for #theDress and those for the five other stimuli in each kind of measurements, i.e. for adjustments (blue), naming (green), and 
online survey (yellow). Panel D illustrates correlations between the scores of #theDress in one measurement and those for the other stimuli in another 
measurement. The dark blue bars correspond to correlations between the adjustment scores for #theDress and the lab naming for the other images; the second 
blue bars show the inverse, i.e. correlations between lab naming of #theDress and adjustments of the other images. The dark and light green bars refer to 
correlations between online #theDress scores and adjustments of other images, and between adjustments of #theDress and online naming of the other images, 
respectively. The yellow bars correspond to correlation between online naming of #theDress and lab naming of the other images, and vice versa. In panels B-D, 

symbols above bars refer to p-values for correlations: * p<0.05, ● p <0.01. To avoid clutter, no symbol is shown for p < 0.001.         

4. Discussion 
Figure 8 summarizes the results of all three measurements, the 

adjustments and naming in the laboratory, and the naming in the online 
survey. For all images, a high amount of variance in the individual 
differences of the adjustments could be explained by one principal 
component (Figure 8A). All three kinds of measurements provided 

evidence for a correlation between the perception of #theDress and the new 
images (Figure 8C-D). Yet, principal components and correlations do not 
fully explain the total variance, and the egg and maybe also the fish seemed 
not to correlate as well with #theDress as the other images (Figure 8D). 

A. Adjustment & naming scores 

Figure 8A shows how much variance was explained by the first principal 
component, indicating how representative the adjustment and naming 
scores were for the respective measurements. The measurements of 
#theDress (left group of bars) tended to follow most closely the linear trend 

captured by the principal component (cf. Figure 4A). For the other images, 
the adjustments (blue bars) seem to be better represented by the scores than 
the naming data (green and yellow bars). This is likely due to the data 
format and the approach to produce the naming scores.   

Figure 8B illustrates the similarities of the three kinds of measurements. 
Responses to #theDress (left group of bars) are most consistent across the 
three measurements. This might be related to the higher variance explained 
by the principal component for responses to #theDress (cf. panel A). 
Correlations involving adjustment scores (blue and green bars) were lower 

than those between lab and online naming (yellow bars) for all images 
except for the fish. 



Adjustments and color naming capture different aspects of the individual 
differences and have different advantages and disadvantages. Adjustments, 
relying on direct perceptual matches, are better suited to capture the 
individual differences in perceived color than color naming, which 
confounds individual differences in perception with differences in naming. 

Color naming varies across observers (e.g. [27-29]). General variation in 
color naming adds to the similarities across images. For example, an 
observer who has a larger blue category would be more likely to call all 
images blue than an observer with a smaller blue category. As a result, color 
naming might confound two kinds of individual differences, one 
concerning the individual difference due to the #theDress effect and one due 
to general differences in naming. In this way, correlations of naming scores 
might potentially overestimate individual differences in perception. 

In addition, adjustments provide more precise color specifications in 
three-dimensional color-space than color terms, which do not distinguish 
between the many perceivable colors within each category. At the same 
time, color adjustments in three-dimensional color space constitute a 
technical challenge to naive observers. Most naive observers are unaware of 
color-opponency and have difficulties to navigate through the two-
dimensional chromatic plane. The fact that lightness had to be adjusted 
independently (to avoid effects of the asymmetric gamut) added to the 

complexity of the adjustment task. In contrast, color naming is rather 
straightforward and does not require any understanding of color space. This 
might produce additional noise in the adjustment as compared to the 
naming task.  

For all measurements, some observers reported pressing the wrong key 
by accident. We corrected data that was obviously swapped between the 
dark and light parts and deleted data when the same answer was given for 
the dark and the light part. The raw data provided very similar results, hence 

confirming that the main results do not depend on the noise produced by 
erroneous responses. Nevertheless, there were certainly some erroneous 
responses left in the data that we could not correct or delete. These 
erroneous responses might well have added noise and reduced the variance 
explained by principal components and correlations.  

In any case, all results provide evidence for systematic individual 
differences in color perception in the new images similar to those observed 
in #theDress. The cross-validation between laboratory measurements and 
online survey further shows that those correlations cannot be attributed to 

effects of presentation sequences. We cannot completely exclude that 
observers memorize their answers and try to be consistent across the two 
sessions (online and lab); however, we think this is very unlikely, given the 
time between the sessions. The differences across objects also contradict a 
general tendency to give consistent answers because such a tendency should 
not vary across objects. 

B. Main determinants of individual differences 

Our findings allow us to pinpoint three sufficient conditions to produce a 

#theDress-effect. First, our algorithm focuses on the major blue-yellowish 
hue direction of #theDress and excludes the role of the chromatic 
distribution away from that color direction. Following preliminary 
measurements [20], we used a modified version of #theDress that differed 
from the original in two respects: it was a cut-out of the dress pasted on a 
black background and its chromatic distribution was projected to the major, 
yellow-blue hue direction. However, the appearance of #theDress barely 
changes when its chromaticities are projected to one hue direction (see 

Figure 1C). In addition, our version produces very similar individual 
differences as the original. In previous studies, we measured individual 
differences for #theDress with background and complete chromatic 
distribution. The first component of the adjustments in the present study 
(72%) explained a higher amount of variance than in a previous study with 
the original #theDress (62%, cf. Figure 6A in [12]). This suggests that the 
systematic variability across observers was higher when projecting the 
distribution to the major hue direction. In addition, naming results were also 

very similar in this (Figure 5A) and in previous studies (Figure 5 in [12]; 
Figure 4A-C in [5]).  

Hence, neither the projection to one hue direction nor the background 
seems to play a major role for the individual differences in perception. 
Previous studies have shown that a specific background can bias the 

perception of #theDress. This is the case when the background is 
unambiguous and specifies the light that illuminates the dress [7-8, 12], or 
when it changes color perception due to local contrast [30]. However, the 
observations made here are in line with previous finding that the 
background of #theDress is largely irrelevant for the individual differences 
as long as the background is ambiguous [3, 22, 30]. They also explain why 
only assumptions about the illumination of the dress, but not assumptions 
about the background are related to the perception of #theDress (Figure 11 

in [5]). 
Second, our algorithm requires input images to have a dark and a light 

chromatic part. Lightness might play an important role for #theDress 
effects. Perceived lightness varies across observers for #theDress, and 
lightness has a positive weight on the first principal component of all 
images except the lighter part of the egg (cf. Table 1). In addition, lightness 
induction modulates the colors seen in #theDress [30-31]. The role of 
lightness in #theDress effects could be explained by an earlier finding, 

according to which observers infer different lightness based on different 
assumptions about the illumination [32]. However, a greyscale version of 
#theDress does not produce individual differences [9, 19], suggesting that 
lightness variation alone cannot explain #theDress effects.  

It seems to be the combination of a dark part with a brownish hue and a 
light part with a bluish hue that is essential for the ambiguous interpretation 
of the images. This is shown by the observation that individual differences 
in perception break down when rotating the color distribution of the dress 

by 180 degree [9,19-20]. The 180 degrees rotation does not allow for 
attributing the bluish tint on the dress to shadow because the relationship 
between lightness and chromaticities does not allow for that [9].  

Evidence for the important role of implicit assumptions about lighting 
and shadow has also been replicated in this study. The correlations between 
#theDress and lightness and blue-yellow ratings, shadow answers and 
overexposure answers replicate those observed previously [5-12]. The fact 
that the question about the flash did not reproduce the significant effect 
observed by Witzel et al. [5] may be attributed to the much lower sample 

size (N = 500 in [5]). Answers to the question about the direction of the 
illumination did not yield any correlation. This finding is at odds with the 
one of Chetverikov and Ivanchei [2]. They found that people who perceive 
the dress as blue-and-black are likely to consider the light source as frontal. 
Given the replicability of the question about shadow across different studies 
(see also [4]), we think that assumed shadow might be the most important 
assumption behind those individual differences in color perception. 

Third, the peephole image showed a cut-out of a photo of sandals that 

had a similar chromatic distribution as #theDress. Previously, we showed 
that individual differences in the perception of those sandals are strongly 
correlated with #theDress [20]. Here, we showed only the cut-out. This 
makes the content of the image barely recognizable. The observed 
correlations between peephole and #theDress suggest that the individual 
differences in perception do not depend on recognizability, i.e. whether the 
observer recognizes the objects in the scene.  

At the same time, we know from previous studies [3, 22] that the color 

distribution alone, without any meaningful content, is not sufficient to 
produce individual differences. Hesslinger & Carbon [3] dissected the dress 
in squares of different sizes and scrambled the squares. The smaller the 
square, the less the image looked like a real material, and the smaller the 
individual differences. From those previous observations together with our 
observation for the peephole, we take that the objects do not need to be 
recognizable to produce individual differences; but they must look like real 
material.  

In sum, the hue direction of the chromatic distribution, the dark and light 
components and the realism of the images were the only similarities 
between the new images and #theDress. The individual differences in the 



perception of the new images and the correlations with #theDress show that 
these features are sufficient to produce the #theDress effect. So, the stripes 
and body shape of the dress in the #theDress photo are not critical for the 
individual differences in color perception. Instead, the distribution of the 
chromaticities from bright bluish colors to dark brownish colors is the 

critical feature of this phenomenon. 
Our algorithm can be of great use for other studies. By now, #theDress is 

world-famous. In this study, most observers (67 of 72, i.e. 93%) responded 
that they knew the image before completing our online survey (cf. 78% in 
[7], 73% in [5], 89% in [22]). It is possible that this prior knowledge 
influences what observers see or lead observers to answer according to their 
knowledge rather than their perception [8]. Such effects of prior knowledge 
might reduce or interact with #theDress effects and studies most likely want 
to avoid confounds between perception and knowledge. In this case, studies 

can use our algorithm for producing new sets of stimuli to elicit #theDress 
effects while making sure that observers did not see those images ever 
before.  

C. Other determinants 

However, the correlations between #theDress and the new images were 
not complete (cf. Figure 8D). In particular, the egg produced lower 
correlations (cf. Figure 8C-D) and the fish yielded different naming patterns 
(Figure 6E) than tie, jacket, and peephole. These observations imply that the 
effectiveness of our algorithm depends on properties of the images beyond 

the color distribution, dark-light components, and realism (cf. section 4.B). 
Still other factors might modulate the magnitude of #theDress effects.  

It is generally known that many properties of photos can affect color and 
material appearance [32-37]. For example, #theDress, the tie and the jacket 
are all fabrics. The fish and the egg might have different material properties 
than fabrics. One such material property is gloss. Perceived gloss has been 
shown to be related to the perceived color of #theDress [5]. Our algorithm 
does not map the gloss of #theDress to the new images and we did not 

control for gloss in the stimulus sampling. Therefore, the gloss of our new 
images is likely to vary. On visual inspection (Figure 2c), the fish seems to 
lack gloss and that might be the reason for smaller #theDress effects with 
the fish. Another candidate material property is translucency. According to 
Figure 2C, the fish seems to feature some translucency at the fins. Much of 
the yellowishness from #theDress seems to be mapped to the translucent 
part of those fins. Still another candidate property is the spatial distribution 
of chromaticies. In Figure 2B, the blue spots in the lower, shaded area of the 

egg look particularly saturated. This concentration of saturated blue seem 
not as visible in #theDress and the other images (Figure 1A, Figure 2). The 
high saturation could contradict an effect of shadow on a white egg. These 
particularities of the fish and the egg might undermine the ambiguity of 
illumination assumptions and #theDress effect. In addition, quail eggs are 
typically white with brown spots. Knowledge about typical colors (memory 
colors) affects color appearance (for review, see [13]), which might also 
counteract individual differences.  

Here, the role of gloss, translucency, saturation, memory colors or still 
other properties of the images remain hypothetical because our study does 
not allow for identifying determinants beyond the color distribution. 
Starting from our observations, future studies may quantify and 
systematically control the effects of other image properties [e.g. 32-37] and 
evaluate their role in #theDress effects as we have done it for the color 
distribution in this study.  

Finally, while our results show that the color distribution is sufficient, 

newest findings suggest that it might not be a necessary condition for 
individual differences in color perception. Those findings show that 
individual differences can be found for images with color distributions that 
do not align with the blue-yellow hue direction of #theDress [38-39]. 
Interestingly, these observations contrast previous ones, according to which 
#theDress effects reduce for colors away from the blue-yellow hue direction 
[19-20]. For the moment, it remains an open question in how far the 
individual differences revealed by the new images are related to those of 

#theDress. Our approach of correlating individual differences across images 
[5, 20, 26] could help clarifying the relationship between the phenomena.    

5. Conclusion 
#theDress is not unique. We developed a simple algorithm that produces 

new images with color distributions similar to #theDress. Our findings 
showed that those images elicited individual differences in color perception 
similar to those observed with #theDress. These observations suggest that 
the object in the photo (i.e. the dress) is of little importance; instead, the 
color distribution is a sufficient condition to produce individual differences 
in color perception with other pictures. It seems not necessary that the 
depicted objects are recognizable, but they need to look like real materials 
so that the viewer makes assumptions about the illumination to make sense 

of image. Other factors, such a gloss, translucency, spatial information, and 
memory colors might reinforce individual differences. In future 
developments, these additional factors could be integrated in our algorithm 
to modulate the strength of the #theDress effect. In any case, the current 
version of the algorithm is already usable in studies that want to exclude 
effects of prior knowledge about the famous #theDress when investigating 
#theDress effects. 
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